A Prototype Finite Difference Model

Timothy H. Kaiser, Ph.D.
tkaiser@mines.edu
A Prototype Model

• We will introduce a finite difference model that will serve to demonstrate what a computational scientist needs to do to take advantage of Distributed Memory computers using MPI

• The model we are using is a two-dimensional solution to a model problem for Ocean Circulation, the Stommel Model

• Examples
 – geco.mines.edu/workshop
The Stommel Problem

• Wind-driven circulation in a homogeneous rectangular ocean under the influence of surface winds, linearized bottom friction, flat bottom and Coriolis force.

• Solution: intense crowding of streamlines towards the western boundary caused by the variation of the Coriolis parameter with latitude.
Governing Equations Model Constants

\[
\begin{align*}
\gamma \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right) + \beta \frac{\partial \psi}{\partial x} &= f \\
f &= -\alpha \sin \left(\frac{\pi y}{2L_y} \right) \\
L_x &= L_y = 2000 \text{Km} \\
\gamma &= 3 \times 10^{-6} \\
\beta &= 2.25 \times 10^{-11} \\
\alpha &= 10^{-9}
\end{align*}
\]
The steady state solution
Domain Discretization

Define a grid consisting of points \((x_i, y_j)\) given by

\[
x_i = i\Delta x, \quad i = 0, 1, \ldots, nx+1
\]
\[
y_j = j\Delta y, \quad j = 0, 1, \ldots, ny+1
\]
\[
\Delta x = L_x / (nx + 1)
\]
\[
\Delta y = L_y / (ny + 1)
\]
Domain Discretization

Seek to find an approximate solution

$$\psi(x_i, y_j)$$ at points $$(x_i, y_j)$$:

$$\psi_{i, j} \approx \psi(x_i, y_j)$$
Centered Finite Difference Scheme for the Derivative Operators

\[
\frac{\partial \psi}{\partial x} \approx \frac{\psi_{i+1,j} - \psi_{i-1,j}}{2\Delta x}
\]

\[
\frac{\partial^2 \psi}{\partial x^2} \approx \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{(\Delta x)^2}
\]

\[
\frac{\partial^2 \psi}{\partial y^2} \approx \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j-1}}{(\Delta y)^2}
\]
Governing Equation
Finite Difference Form

\[
\psi_{i,j} = a_1 \psi_{i+1,j} + a_2 \psi_{i-1,j} + a_3 \psi_{i,j+1} + a_4 \psi_{i,j-1} - a_5 f_{i,j}
\]

\[
a_1 = \frac{\Delta y^2}{2(\Delta x^2 + \Delta y^2)} + \frac{\beta \Delta x^2 \Delta y^2}{4\gamma \Delta x (\Delta x^2 + \Delta y^2)}
\]

\[
a_2 = \frac{\Delta y^2}{2(\Delta x^2 + \Delta y^2)} - \frac{\beta \Delta x^2 \Delta y^2}{4\gamma \Delta x (\Delta x^2 + \Delta y^2)}
\]

\[
a_3 = \frac{\Delta x^2}{2(\Delta x^2 + \Delta y^2)}
\]

\[
a_4 = \frac{\Delta x^2}{2(\Delta x^2 + \Delta y^2)}
\]

\[
a_5 = \frac{\Delta x^2 \Delta y^2}{2\gamma (\Delta x^2 + \Delta y^2)}
\]
Five-point Stencil Approximation

$$\psi_{i,j} = a_1 \psi_{i+1,j} + a_2 \psi_{i-1,j} + a_3 \psi_{i,j+1} + a_4 \psi_{i,j-1} - a_5 f_{i,j}$$

$$\psi_{i,0} = \psi_{i,ny+1} = 0; \quad \psi_{0,j} = \psi_{nx+1, j} = 0;$$
Jacobi Iteration

Start with an initial guess for \((\psi_{i,j})\)

\[
do \ i = 1, \ nx; \ j = 1, \ ny
\]

\[
(\psi_{i,j})_{\text{new}} = a_1(\psi_{i+1,j}) + a_2(\psi_{i-1,j}) + a_3(\psi_{i,j+1}) + a_4(\psi_{i,j-1}) - a_5 f_{i,j}
\]

\[
\text{end do}
\]

Copy

\[
(\psi_{i,j}) = (\psi_{i,j})_{\text{new}}
\]

Repeat the process
A Prototype Finite Difference Model (Philosophy)
Overview

• Model written in Fortran 90

• Uses many new features of F90
 – Free format
 – Modules instead of commons
 – Module with kind precision facility
 – Interfaces
 – Allocatable arrays
 – Array syntax
Free Format

• Statements can begin in any column

• ! Starts a comment

• To continue a line use a “&” on the line to be continued
Modules instead of commons

- Modules have a name and can be used in place of named commons
- Modules are defined outside of other subroutines
- To “include” the variables from a module in a routine you “use” it
- The main routine stommel and subroutine jacobi share the variables in module “constants”

```fortran
module constants
  real dx, dy, a1, a2, a3, a4, a5, a6
end module
```

```fortran````

```fortran
program stommel
 use constants
 ...
end program
```

```fortran````

```fortran
subroutine jacobi
  use constants
  ...
end subroutine jacobi
```

Instead of declaring variables

```plaintext
real*8 x, y
```

We use

```plaintext
real(b8) x, y
```

Where b8 is a constant defined within a module

```plaintext
module numz
    integer, parameter :: b8 = selected_real_kind(14)
end module
```

```plaintext
program stommel
    use numz
    real(b8) x, y
    x = 1.0_b8
    ...
```
Kind precision facility Why?

Legality
Portability
Reproducibility
Modifiability

```
real*8 x, y
```
is not legal syntax in Fortran 90
Declaring variables “double precision” will give us 16 byte reals on some machines
```
integer, parameter :: b8 = selected_real_kind(14)
real(b8) x, y
x = 1.0_b8
```
Allocatable arrays

- We can declare arrays to be allocatable
- Allows dynamic memory allocation
- Define the size of arrays at run time

```fortran
real(b8), allocatable:: psi(:, :) ! our calculation grid
real(b8), allocatable:: new_psi(:, :) ! temp storage for the grid

! allocate the grid to size nx * ny plus the boundary cells
allocate(psi(0:nx+1, 0:ny+1))
allocate(new_psi(0:nx+1, 0:ny+1))
```
Interfaces

• Similar to C prototypes
• Can be part of the routines or put in a module
• Provides information to the compiler for optimization
• Allows type checking

 module face
 interface bc
 subroutine bc (psi,i1,i2,j1,j2)
 use numz
 real(b8),dimension(i1:i2,j1:j2):: psi
 integer,intent(in):: i1,i2,j1,j2
 end subroutine
 end interface
 end module
 program stommel
 use face
 ...
Allows assignments of arrays without do loops

! allocate the grid to size nx * ny plus the boundary cells
allocate(psi(0:nx+1,0:ny+1))
allocate(new_psi(0:nx+1,0:ny+1))

! set initial guess for the value of the grid
psi=1.0_b8

! copy from temp to main grid
psi(i1:i2,j1:j2)=new_psi(i1:i2,j1:j2)
Program Outline (1)

- Module NUMZ - defines the basic real type as 8 bytes
- Module INPUT - contains the inputs
 - nx, ny (Number of cells in the grid)
 - lx, ly (Physical size of the grid)
 - alpha, beta, gamma (Input calculation constants)
 - steps (Number of Jacobi iterations)
- Module Constants - contains the invariants of the calculation
Program Outline (2)

• Module face - contains the interfaces for the subroutines
 – bc - boundary conditions
 – do_jacobi - Jacobi iterations
 – force - right hand side of the differential equation
 – Write_grid - writes the grid
Program Outline (3)

• Main Program
 – Get the input
 – Allocate the grid to size nx * ny plus the boundary cells
 – Calculate the constants for the calculations
 – Set initial guess for the value of the grid
 – Set boundary conditions using
 – Do the jacobi iterations
 – Write out the final grid
C version considerations

• To simulate the F90 numerical precision facility we:
 – #define FLT double
 – And use FLT as our real data type throughout the rest of the program

• We desire flexibility in defining our arrays and matrices
 – Arbitrary starting indices
 – Contiguous blocks of memory for 2d arrays
 – Use routines based on *Numerical Recipes in C*
Vector allocation routine

```
FLT *vector(INT nl, INT nh)
{
    /* creates a vector with bounds vector[nl:nh] */
    FLT *v;
    /* allocate the space */
    v=(FLT *)malloc((unsigned) (nh-nl+1)*sizeof(FLT));
    if (!v) {
        printf("allocation failure in vector()\n");
        exit(1);
    }
    /* return a value offset by nl */
    return v-nl;
}
```
Matrix allocation routine

FLT **matrix(INT nrl,INT nrh,INT ncl,INT nch)
/* creates a matrix with bounds matrix[nrl:nrh][ncl:nch] */
/* modified from the book version to return contiguous space */
{
 INT i;
 FLT **m;
 /* allocate an array of pointers */
 m=(FLT **) malloc((unsigned) (nrh-nrl+1)*sizeof(FLT*));
 if (!m){
 printf("allocation failure 1 in matrix()\n"); exit(1);
 }
 m -= nrl; /* offset the array of pointers by nrl */
 for(i=nrl;i<=nrh;i++) {
 if(i == nrl){
 /* allocate a contiguous block of memroy*/
 m[i]=(FLT *) malloc((unsigned) (nrh-nrl+1)*(nch-ncl+1)*sizeof(FLT));
 if (!m[i]){
 printf("allocation failure 2 in matrix()\n");exit(1); }
 m[i] -= ncl; /* first pointer points to beginning of the block */
 }else {
 m[i]=m[i-1]+(nch-ncl+1); /* rest of pointers are offset by stride */
 }
 }
 return m;
}
Digression... a 3d Volume allocation routine

Same idea but we allocate an array of slices

```c
FLT ***cube(INT nslice1, INT nslice2, INT nrow1, INT nrow2, INT ncol1, INT ncol2) {
    FLT **slice(INT nrow1, INT nrow2, INT ncol1, INT ncol2, FLT **temp);
    FLT *temp, ***mcube;
    INT i;
    mcube = (FLT ***) malloc((unsigned) (nslice2-nslice1+1)*sizeof(FLT*));
    if (!mcube){
        printf("allocation failure at 1 in cube()\n");
        return NULL;
    }
    mcube -= nslice1;
    temp = (FLT*) malloc((unsigned) (nslice2-nslice1+1)*
                        (nrow2-nrow1+1)*
                        (ncol2-ncol1+1)*sizeof(FLT));
    if (*temp){
        printf("allocation failure at 2 in cube()\n");
        return NULL;
    }
    for(i=nslice1;i<=nslice2;i++) {
        mcube[i] = slice(nrow1, nrow2, ncol1, ncol2, &temp);
        if (!mcube[i]) return NULL;
        temp += (nrow2-nrow1+1)*(ncol2-ncol1+1);
    }
    return mcube;
}
```
Digression... a 3d version of this routine

Our slice allocation routine

```c
FLT **slice(INT nrow1, INT nrow2, INT ncol1, INT ncol2, FLT **temp) {
    INT i;
    FLT **mslice;
    mslice=(FLT **) malloc((unsigned) (nrow2-nrow1+1)*sizeof(FLT*));
    if (!mslice){
        printf("allocation failure at 3 in slice()\n");
        return NULL;
    }
    mslice -= nrow1;
    for(i=nrow1;i<=nrow2;i++) {
        if(i == nrow1){
            mslice[i]=*temp;
            mslice[i] -= ncol1;
        } else {
            mslice[i]=mslice[i-1]+(ncol2-ncol1+1);
        }
    }
    return mslice;
}
```