1 Name

\texttt{ieee_arithmetic} — Intrinsic module providing IEEE arithmetic facilities

2 Usage

\texttt{USE,INTRINSIC :: IEEE_ARITHMETIC}

This module provides various facilities related to IEEE arithmetic.

The contents of this module conform to technical report ISO/IEC TR 15580:1998(E).

3 Synopsis

Derived Types

\texttt{IEEE_CLASS_TYPE, IEEE_FLAG_TYPE (from IEEE_EXCEPTIONS), IEEE_ROUND_TYPE, IEEE_STATUS_TYPE (from IEEE_EXCEPTIONS)}.

Parameters

Operators

\texttt{==, /=}.

Procedures

4 Derived-Type Description

TYPE IEEE_CLASS_TYPE
 PRIVATE
 ...
END TYPE

Type for specifying the class of a number. Its only possible values are those of the named constants exported by this module.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_FLAG_TYPE

See IEEE_EXCEPTIONS for a description of this type.

TYPE IEEE_ROUND_TYPE
 PRIVATE
 ...
END TYPE

Type for specifying the rounding mode. Its only possible values are those of the named constants exported by this module.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_STATUS_TYPE

See IEEE_EXCEPTIONS for a description of this type.

5 Parameter Description

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_ALL

See IEEE_EXCEPTIONS for a description of this parameter.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_DIVIDE_BY_ZERO

See IEEE_EXCEPTIONS for a description of this parameter.

TYPE(IEEE_ROUND_TYPE),PARAMETER :: IEEE_DOWN

The rounding mode in which the results of a calculation are rounded to the nearest machine-representable number that is less than the true result.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_INEXACT

See IEEE_EXCEPTIONS for a description of this parameter.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_INVALID
See IEEE_EXCEPTIONS for a description of this parameter.

```fortran
TYPE(IEEE_ROUND_TYPE),PARAMETER :: IEEE_NEAREST
```

The rounding mode in which the results of a calculation are rounded to the nearest machine-representable number.

```fortran
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_NEGATIVE_DENORMAL
```

A negative number whose precision is less than that of the normal numbers; the result of an IEEE gradual underflow.

```fortran
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_NEGATIVE_INF
```

Negative infinity.

```fortran
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_NEGATIVE_NORMAL
```

A normal negative number.

```fortran
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_NEGATIVE_ZERO
```

Negative zero.

```fortran
TYPE(IEEE_ROUND_TYPE),PARAMETER :: IEEE_OTHER
```

Any processor-dependent rounding mode other than IEEE_DOWN, IEEE_NEAREST, IEEE_TO_ZERO and IEEE_UP.

```fortran
USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_OVERFLOW
```

See IEEE_EXCEPTIONS for a description of this parameter.

```fortran
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_POSITIVE_DENORMAL
```

A positive number whose precision is less than that of the normal numbers; the result of an IEEE gradual underflow.

```fortran
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_POSITIVE_INF
```

Positive infinity.

```fortran
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_POSITIVE_NORMAL
```

A normal positive number.
TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_POSITIVE_ZERO
Positive zero.

TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_QUIET_NAN
A “Not-a-Number” value that propagates through arithmetic operations but which does not necessarily raise the IEEE_INVALID exception on use.

TYPE(IEEE_CLASS_TYPE),PARAMETER :: IEEE_SIGNALING_NAN
A “Not-a-Number” that raises the IEEE_INVALID exception on use.

TYPE(IEEE_ROUND_TYPE),PARAMETER :: IEEE_TO_ZERO
The rounding mode in which the results of a calculation are rounded to the nearest machine-representable number that lies between zero and the true result.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_UNDERFLOW
See IEEE_EXCEPTIONS for a description of this parameter.

TYPE(IEEE_ROUND_TYPE),PARAMETER :: IEEE_UP
The rounding mode in which the results of a calculation are rounded to the nearest machine-representable number that is greater than the true result.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_USUAL
See IEEE_EXCEPTIONS for a description of this parameter.

6 Operator Description
In addition to ISO/IEC TR 15580:1998(E), the module IEEE_ARITHMETIC defines the ‘==’ and ‘=/=’ operators for the IEEE_CLASS_TYPE. These may be used to test the return value of the IEEE_CLASS function. E.g

USE,INTRINSIC :: IEEE_ARITHMETIC, ONLY: IEEE_CLASS, &
IEEE_QUIET_NAN, OPERATOR(==)
.
.
IF (IEEE_CLASS(X)==IEEE_QUIET_NAN) THEN
.
.

7 Procedure Description

```fortran
ELEMENTAL TYPE(IEEE_CLASS_TYPE) FUNCTION IEEE_CLASS(X)
  REAL(any kind),INTENT(IN) :: X
Returns the IEEE class that the value of X falls into.

ELEMENTAL REAL(kind) FUNCTION IEEE_COPY_SIGN(X,Y)
  REAL(kind),INTENT(IN) :: X
  REAL(kind),INTENT(IN) :: Y
Returns the value of X with the sign of Y. The result has the same kind as X.
This function is only available if IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y)
are both true.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_GET_FLAG
See IEEE_EXCEPTIONS for a description of this procedure.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_GET_HALTING_MODE
See IEEE_EXCEPTIONS for a description of this procedure.

SUBROUTINE IEEE_GET_ROUNDING_MODE(ROUND_VALUE)
  TYPE(IEEE_ROUND_TYPE),INTENT(OUT) :: ROUND_VALUE
Sets ROUND_VALUE to the current rounding mode, one of IEEE_DOWN, IEEE_NEAREST, IEEE_OTHER,
IEEE_TO_ZERO or IEEE_UP.

USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_GET_STATUS
See IEEE_EXCEPTIONS for a description of this procedure.

ELEMENTAL LOGICAL FUNCTION IEEE_ISFINITE(X)
  REAL(any kind),INTENT(IN) :: X
Returns true if X is a finite number, i.e. neither an infinity nor a NaN.

ELEMENTAL LOGICAL FUNCTION IEEE_ISNAN(X)
  REAL(any kind),INTENT(IN) :: X
Returns true if X is a NaN (either quiet or signalling).

ELEMENTAL LOGICAL FUNCTION IEEE_ISNEGATIVE(X)
  REAL(any kind),INTENT(IN) :: X
```

Returns true if \(X \) is negative, even for negative zero.

\[
\text{ELEMENTAL LOGICAL FUNCTION IEEE_IS_NORMAL}(X)
\]
\[
\text{REAL(any kind),INTENT(IN)} :: X
\]

Returns if \(X \) is normal, i.e. not an infinity, a NaN, or denormal.

\[
\text{ELEMENTAL REAL(kind) FUNCTION IEEE_LOGB}(X)
\]
\[
\text{REAL(kind),INTENT(IN)} :: X
\]

Returns the unbiased exponent of \(X \). For normal, non-zero numbers this is the same as the EXPONENT\((X)\)-1; for zero, IEEE_DIVIDE_BY_ZERO is signalled and the result is negative infinity (or -HUGE\((X)\) if negative infinity is not available); for an infinity the result is positive infinity; for a NaN the result is a quiet NaN.

\[
\text{ELEMENTAL REAL(kind) FUNCTION IEEE_NEXT_AFTER}(X,Y)
\]
\[
\text{REAL(kind),INTENT(IN)} :: X
\]
\[
\text{REAL(kind),INTENT(IN)} :: Y
\]

Returns the closest machine-representable number to \(X \) (of the same kind as \(X \)) that is either greater than \(X \) (if \(X < Y \)) or less than \(X \) (if \(X > Y \)). If \(X \) and \(Y \) are equal, \(X \) is returned.

\[
\text{ELEMENTAL REAL(kind) FUNCTION IEEE_REM}(X,Y)
\]
\[
\text{REAL(kind),INTENT(IN)} :: X
\]
\[
\text{REAL(kind),INTENT(IN)} :: Y
\]

The result value is the exact remainder from the division \(X / Y \), viz \(X - Y * N \) where \(N \) is the nearest integer to the true result of \(X / Y \).

\[
\text{ELEMENTAL REAL(kind) FUNCTION IEEE_RINT}(X)
\]
\[
\text{REAL(kind),INTENT(IN)} :: X
\]

\(X \) rounded to the nearest integer using the current rounding mode.

\[
\text{ELEMENTAL REAL(kind) FUNCTION IEEE_SCALB}(X,I)
\]
\[
\text{REAL(kind),INTENT(IN)} :: X
\]
\[
\text{INTEGER(any kind),INTENT(IN)} :: I
\]

The result is \(X * 2 ** I \) without computing \(2 ** I \), with overflow or underflow exceptions signalled only if the end result overflows or underflows.

\[
\text{INTEGER FUNCTION IEEE_SELECTED_REAL_KIND}(P,R)
\]
\[
\text{INTEGER(any kind),INTENT(IN),OPTIONAL ::} P
\]
\[
\text{INTEGER(any kind),INTENT(IN),OPTIONAL ::} R
\]

The same as the SELECTED_REAL_KIND\((P,R)\) intrinsic, but only returns numbers of kinds for which IEEE_SUPPORT_DATATYPE returns true.

\[
\text{USE,INTRINSIC :: IEEE_EXCEPTIONS,ONLY:IEEE_SET_FLAG}
\]
SUBROUTINE IEEE_SET_ROUNDING_MODE(ROUND_VALUE)
 TYPE(IEEE_ROUND_TYPE),INTENT(IN) :: ROUND_VALUE

Sets the current rounding mode to ROUND_VALUE. This is only allowed when
IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) is true for all X such that
IEEE_SUPPORT_DATATYPE(X) is true.

LOGICAL FUNCTION IEEE_SUPPORT_DATATYPE(X)
 REAL(any kind),INTENT(IN),OPTIONAL :: X

Returns true if and only if all reals (if X is absent), or reals of the same kind as X conform to the IEEE
standard for representation, addition, subtraction and multiplication when the operands and results have
normal values.

LOGICAL FUNCTION IEEE_SUPPORT_DENORMAL(X)
 REAL(any kind),INTENT(IN),OPTIONAL :: X

Returns true if and only if IEEE denormalised values are supported for all real kinds (if X is absent) or for
reals of the same kind as X.

LOGICAL FUNCTION IEEE_SUPPORT_DIVIDE(X)
 REAL(any kind),INTENT(IN),OPTIONAL :: X

Returns true if and only if division on all reals (if X is absent) or on reals of the same kind as X is performed
to the accuracy required by the IEEE standard.
Returns true if and only if IEEE infinities are supported for all reals (if X is absent) or for reals of the same kind as X.

```fortran
LOGICAL FUNCTION IEEE_SUPPORT_NAN(X)
REAL(any kind),INTENT(IN),OPTIONAL :: X
```

Returns true if and only if IEEE NaNs are supported for all reals (if X is absent) or for reals of the same kind as X.

```fortran
LOGICAL FUNCTION IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X)
TYPE(IEEE_ROUND_TYPE) :: ROUND_VALUE
REAL(any kind),OPTIONAL :: X
```

Returns true if and only if the rounding mode for all reals (if X is absent) or reals of the same kind as X, can be changed to the specified rounding mode by the IEEE_SET_ROUNDING procedure.

```fortran
LOGICAL FUNCTION IEEE_SUPPORT_SQRT(X)
REAL(any kind),INTENT(IN),OPTIONAL :: X
```

Returns true if and only if the SQRT intrinsic conforms to the IEEE standard for all reals (if X is absent) or for reals of the same kind as X.

```fortran
LOGICAL FUNCTION IEEE_SUPPORT_STANDARD(X)
REAL(any kind),INTENT(IN),OPTIONAL :: X
```

Returns true if and only if all the other IEEE_SUPPORT inquiry functions return the value true for all reals (if X is absent) or for reals of the same kind as X.

```fortran
ELEMENTAL LOGICAL FUNCTION IEEE_UNORDERED(X,Y)
REAL(any kind),INTENT(IN) :: X
REAL(any kind),INTENT(IN) :: Y
```

Returns IEEE_IS_NAN(X).OR.IEEE_IS_NAN(Y).

```fortran
ELEMENTAL REAL(kind) FUNCTION IEEE_VALUE(X,CLASS)
REAL(kind),INTENT(IN) :: X
TYPE(IEEE_CLASS_TYPE),INTENT(IN) :: CLASS
```

Returns a sample value of the same kind as X that falls into the specified IEEE number class. For a given kind of X and class, the same value is always returned.

8 See Also

nagfor(1), ieee_exceptions(3), ieee_features(3), intro(3), nag_modules(3).

9 Bugs

Please report any bugs found to ‘support@nag.co.uk’ or ‘support@nag.com’, along with any suggestions for improvements.